Перевод: со всех языков на английский

с английского на все языки

уровень переключения

  • 1 уровень переключения

    1. trigger level

     

    уровень переключения

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > уровень переключения

  • 2 уровень переключения

    Русско-английский большой базовый словарь > уровень переключения

  • 3 уровень переключения

    Information technology: trigger level

    Универсальный русско-английский словарь > уровень переключения

  • 4 уровень переключения

    Русско-английский словарь по вычислительной технике и программированию > уровень переключения

  • 5 уровень потока

    Русско-английский словарь по информационным технологиям > уровень потока

  • 6 источник бесперебойного питания с двойным преобразованием (энергии)

    1. double conversion UPS

     

    источник бесперебойного питания с двойным преобразованием (энергии)
    -

    EN

    double conversion
    Topology of On-Line UPS (VFI class per IEC 62040-3). The AC mains voltage is converted to DC by means of an ac to DC Rectifier (or Charger), The DC voltage is then converted to conditioned AC by means of the Inverter.
    [ http://www.upsonnet.com/UPS-Glossary/]

    0423
    Структурная схема ИБП с двойным преобразованием энергии

    Вся потребляемая из питающей сети энергия поступает на выпрямитель и преобразуется в энергию постоянного тока, а затем инвертором - в энергию пере­менного тока.

    Высококачественные ИБП с двойным преобразованием энергии, как правило, имеют гальваническую развязку, что значительно улучшает помехоустойчивость защищаемого оборудования.

    Обязательным элементом ИБП двойного преобразования большой и средней мощности является байпас - устройство обходного пути. Байпас представляет собой комбинированное электронно-механическое устрой­ство, состоящее из так называемого статического байпаса и ручного (механическо­го, контактного) байпаса.

    Достоинства

    • Нулевое время переключения.
      В некоторых случаях данный фактор в настоящее время перестал играть решающую роль, потому что в современных компьютерах применяются блоки питания, соответствующие стандартам IEEE, согласно которым компьютер должен быть способен выдерживать перерыв в питании не менее 8.3 мс.
      При этом в off-line ИБП, выпускаемых фирмой АРС время переключения не превышает 8 мс.
    • Строгая стабилизация выходного напряжения.

    Недостатки

    • Высокая стоимость,
    • Повышенный уровень помех, вносимых самим ИБП в электрическую сеть,
    • Более низкий КПД по сравнению с другими типами ИБП.

    [ http://www.tcs.ru/reviews/?id=345 с изменениями]


    Часто в качестве синонима термина ИПБ с двойным преобразованием употребляют термин on-line ИБП. Это не верно, так как в группу on-line ИБП входят ИБП четырех типов (см. источник бесперебойного питания активного типа).

    В ИБП с двойным преобразованием вся потребляемая энергия поступает на выпрямитель и преобразуется в энергию постоянного тока, а затем инвертором — в энергию пере­менного тока.

    Технология двойного преобразования отработана и успешно используется свы­ше двадцати лет, однако ей присущи принципиальные недостатки:

    • ИБП является причиной гармонических искажений тока в электрической сети (до 30%) и, таким образом, — потенциально причиной нарушения работы другого оборудования, соединенного с электрической сетью; он имеет низкое значение входного коэффициента мощности (coscp);
    • ИБП имеет значительные потери, так как принципом получения выходного переменного тока является первичное преобразование в энергию постоянного тока, а затем снова преобразование в энергию переменного тока; в процессе такого двойного преобразования обычно теряется до 10 % энергии.

    Первый недостаток устраняется за счет применения дополнительных уст­ройств (входных фильтров, 12-импульсных выпрямителей, оптимизаторов-бусте­ров), а второй принципиально не устраним (у лучших образцов ИБП большой мощности КПД не превышает 93 %).

    Современные ИБП двойного преобразования оборудуются так называемыми кондиционерами гармоник и устройствами кор­рекции коэффициента мощности (coscp). Эти устройства входят либо в базовый комплект ИБП, либо применяются опционально и позволяют снять проблему с внесением гармонических искажений (составляют не более 3 %) и повысить коэф­фициент мощности до 0,98.

    Существуют схемы ИБП с двойным преобразованием 1:1, 3:1 и 3:3. Это означает:

    • 1:1 — однофазный вход, однофазный выход;
    • 3:1 — трехфазный вход, однофазный выход;
    • 3:3 — трехфазный вход, трехфазный выход.

    Схемы 1:1 и 3:1 целесообразно применять для мощностей нагрузки до 30 кВА, при этом симметрирование не требуется, и мощность инвертора используется ра­ционально. Следует иметь в виду, что байпас в таких схемах является однофазным и при переходе ИБП с инвертора на байпас для входной сети ИБП 3:1 становится несимметричным устройством, подобно ИБП 1:1.

    0429
    ИБП по схеме 3:1

    Особенностью данной схемы является наличие на входе конвертора 3:1. При его отсутствии ИБП имеет схему 1:1. Наличие конвертора не только превращает ИБП 1:1 в 3:1, но и позволяет осуществлять работу через байпас в симметричном режиме.

    0430
    ИБП по схеме 3:3

    ИБП по схеме 3:3 в отличие от ИПБ по схеме 3:1 имеет зарядное устройство для оптимизации режима заряда аккумулятор­ной батареи и преобразователь постоянного тока — бустер (booster DC/DC), позво­ляющий облегчить работу выпрямителя за счет снижения глубины регулирования. Таким образом обеспечивается меньший уровень гармонических искажений вход­ного тока. В некоторых случаях такую схему называют схемой с тройным преобра­зованием.

    Принципиально нет предпосылок выделять такие схемы в отдельный тип ИБП, так как остается общим главный принцип — выпрямление тока с его последующим инвертированием. Разумеется, в звене постоянного тока могут присутствовать сгла­живающие ёмкости, а в некоторых случаях — дроссель (на схемах не показаны). ИБП  работает по схеме 3:3 в любом режиме — при работе через инвертор (ре­жим on-line) и при работе через байпас. По отношению к питающей сети работа в ре­жиме on-line является симметричной, тогда как работа через байпас зависит от балан­са нагрузок по фазам. Впрочем, сбалансированность нагрузок по фазам в первую очередь важна для рационального использования установленной мощности самого источника, а по отношению к питающей сети небаланс по фазам при работе через бай­пас может проявить себя только при работе с ДГУ. Но в этом случае решающим будет не симметрия нагрузки, а её нелинейность.

    [ http://electromaster.ru/modules/myarticles/article.php?storyid=365 с изменениями]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > источник бесперебойного питания с двойным преобразованием (энергии)

  • 7 технология RTC

    1. AMA
    2. Advanced Motion Acceleration

     

    технология RTC
    Технология ускорения времени реакции пиксела ЖК-ячейки.
    Технология ускорения времени реакции пиксела реализована исключительно на уровне электроники ЖК-монитора и никак не затрагивает технологию производства самих ЖК-матриц. Поскольку время переключения пиксела из одного состояния в другое зависит от прикладываемого к ячейке напряжения, то можно ускорить время переключения, если в процессе самого перехода использовать напряжение больше или меньше (в зависимости от того, между какими уровнями серого реализуется переход), чем требуется (чем соответствует требуемому уровню серого).
    Для реализации технологии RTC необходимо, чтобы каждому переходу между градациями серого соответствовал бы свой уровень компенсирующего напряжения, подаваемого в первом кадре. Причём уровень компенсирующего напряжения зависит не только от уровня серого, на который происходит переход, но и от уровня серого, с которого происходит переход. Поэтому для реализации технологии RTC сигнальный процессор монитора должен иметь кадровый буфер, в котором хранится предыдущий кадр. При приходе нового кадра для каждого пикселя на основе предыдущего и требуемого уровней GL происходит расчёт требуемого уровня форсирующего напряжения. Для этого монитор содержит специальную таблицу Look-Up Table (LUT), в которой хранится соответствие между выходным уровнем серого (соответствующего форсированному импульсу напряжения) и уровнями серого предыдущего и текущего кадров.
    4401
    Вид искажений формы движущегося объекта: без технологии разгонного импульса (3а), при ее неточной (3б) и качественной настройке (3в) [Источник: www.itc.ua].
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология RTC

  • 8 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 9 импульсное перенапряжение

    1. surge voltage
    2. surge overvoltage
    3. surge
    4. spike
    5. pulse surge
    6. power surge
    7. peak overvoltage
    8. high-voltage surge
    9. electrical surge
    10. damaging transient
    11. damaging surge

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > импульсное перенапряжение

  • 10 целевой срок восстановления

    1. RTO
    2. recovery time objective

     

    целевой срок восстановления
    Время, запланированное для:
    - возобновления производства продукции или оказания услуг после инцидента;
    - возобновления деятельности после инцидента;
    - восстановления информационной системы и/или прикладных программ после инцидента.
    Примечание - Целевой срок восстановления должен быть меньше, чем максимально приемлемый период нарушения.
    [ ГОСТ Р 53647.1-2009]

    целевое время восстановления
    Время, необходимое для начала работы в режиме переключения с момента заявления заказчика о катастрофе. Это время, с одной стороны, определяется бизнес-планами заказчика, а с другой – подтверждается техническими средствами и услугами исполнителя. Определяет фактический уровень услуг BRS/DRS.
    [http://www.outsourcing.ru/content/glossary/A/page-1.asp]

    директивное время восстановления
    Время, за которое требуется восстановить систему в случае необходимости.
    [ http://www.dtln.ru/slovar-terminov]

    целевое время восстановления
    RTO

    (ITIL Service Design)
    (ITIL Service Operation)
    Максимальное время, отведенное для восстановления ИТ-услуги после за ее прерывания. Предоставляемый при этом уровень услуги может быть ниже нормальных значений целевых показателей уровня услуги. Целевое время восстановления должно быть обсуждено, согласовано и задокументировано для каждой ИТ-услуги.
    См. тж. анализ влияния на бизнес.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    recovery time objective
    RTO

    (ITIL Service Design)
    (ITIL Service Operation)
    The maximum time allowed for the recovery of an IT service following an interruption. The service level to be provided may be less than normal service level targets. Recovery time objectives for each IT service should be negotiated, agreed and documented. See also business impact analysis.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    2.32 целевой срок восстановления (recovery time objective); RTO: Время, запланированное для:

    - возобновления производства продукции или оказания услуг после инцидента;

    - возобновления деятельности после инцидента;

    - восстановления информационной системы и/или прикладных программ после инцидента.

    Примечание - Целевой срок восстановления должен быть меньше, чем максимально приемлемый период нарушения.

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    2.26 целевой срок восстановления (recovery time objective; RTO): Время, запланированное для:

    - возобновления производства продукции или оказания услуг после инцидента;

    - возобновления деятельности после инцидента;

    - восстановления информационной системы и/или прикладных программ после инцидента.

    Примечание - Целевой срок восстановления должен быть меньше, чем максимально приемлемый период нарушения.

    Источник: ГОСТ Р 53647.1-2009: Менеджмент непрерывности бизнеса. Часть 1. Практическое руководство оригинал документа

    3.29 целевой срок восстановления (recovery time objective); RTO: Плановое время возобновления деятельности и восстановления ресурсов, установленное на основе максимально приемлемого периода нарушения/разрушения деятельности организации.

    Источник: ГОСТ Р 53647.4-2011: Менеджмент непрерывности бизнеса. Руководящие указания по обеспечению готовности к инцидентам и непрерывности деятельности оригинал документа

    Русско-английский словарь нормативно-технической терминологии > целевой срок восстановления

  • 11 сигнализатор


    warning device /unit/
    (аварийной сигнализации)
    - (визуальный, звуковой) — signalling device
    к данным сигнализаторам относятся лампы, звонки, зуммеры и т.п.). — signalling devices are lamps, bells, buzzers) etc.
    - (датчик) — detector, switch, sensor
    - (индикатор аварийной сигнализации)warning indicator
    - (неаварийной сигнализации)indicator
    - (панель световых табло)(light) annunciator panel
    - (световой, аварийный) — warning light
    - (световой, неаварийный) — indicator light
    - (световой, е цветным фильтром) — jeweled warning (or indicator) light
    - (световое табло)(light) annunciator
    - (шторный, закрывающий индикаwию) — shutter
    - бленкера, флажковый — warning flag
    -, бленкерный — warning flag
    - вводаenter indicator
    индицирует состояние системы (омега) в режиме ввода данных в свой вычислитель. — indicates that ons is in the data entry mode.
    - включения сигнальной лампы (низкого давления масла)(low oil pressure) warning light switch
    - воздушной скорости (реле давления)airspeed switch
    - возникновения пожара (датчик)fire detector
    - времени (реле)time switch
    - высокой температуры (выходящих) газов турбины (индикатор)overtemperature tgt indicator
    -, высотный — altitude switch
    -, высоты — altitude switch
    устройство, электрические контакты которого замыкаются или размыкаются при достижении заданной высоты. — the altitude switch is a device in which the electrical contacts are made or broken at the predetermined altitude.
    - выхода на критический угол при отрыве носового колеса (при взлете)overrotation warning unit
    -, гидравлический — hydraulically-operated pressure switch
    - готовности (системы к рабате), световой — arming light
    сигнализатор готовности системы автоматического флюгирования. — automatic feathering arming light.
    - давленияpressure switch
    реле, срабатывающее при изменении подводимого давления газа или жидкости (рис. 93). — а switch actuated by а change in the pressure of a gas or liquid.
    - давления, воздушный (пневматический) — air-operated pressure switch
    - давления в фильтреfilter pressure switch
    - давления в фильтре (световой)filter pressure light
    - давления, дифференциальный — differential pressure switch
    - давления, малогабаритный, теплостойкий, виброустойчивый (мств-) — small-size heat-resistant vibration proof pressure switch
    - давления топлива в гидроцилиндрах к.п.в. — compressor bleed valve control cylinder fuel pressure switch
    - достижения предельной скорости — maximum operating limit speed (warning) switch /relay/
    - дымаsmoke detector
    - дыма, фотоэлектрический — photoelectric smoke detector
    - загрязнения масла (двиг.) — chip detector, chips-in-oil detector
    - засорения фильтра (магнитный)filter clogging detector
    - избыточного давленияdifferential pressure switch
    - износа (тормозных дисков колеса)wear indicator
    штырь сигнализатора износа закреплен к нажимному диску и выступает из корпуса тормоза, — the wear indicator rod is secured to the pressure disc and projects through the torque plate.
    - контроля, световой убедиться в загорании светосигнализаторов контроля положения предкрылков. — monitor light
    - критического угла атаки (датчик)stall sensor
    -, механический — mechanically-operated switch
    - минимального давления топлива на входе в hp (насос регулятор) — fcu/ffr/ inlet minimum fuel pressure switch
    -, мнемонический, световой — mnemonic indicating (or warning) light
    -, напоминающий (о пределе к-л. параметра) — reminder. airport minimum safe altitude remindeг.
    - нарушения питания (снп)power fail relay (pfr)
    срабатывает при прекращении подачи и понижении напряжения питания. — operates when the power supply is lost or underrated.
    - нарушения (параметров) питания (реле) реле, срабатывающее при нарушении параметров питания. — power relay. relay which functions at a predetermined value of power. it may be an overpower or underpower relay.
    - недостаточного (малого) давления топлива (масла), включающий лампу (или табло) — fuel (oil) low pressure warning light switch
    - неопределенности положения самолета относительно наземных станций и ошибок контрольных сумм памяти вычислителя — амв annunciator indicates position ambiguity or memory checksum error.
    - обледененияice detector
    - обледенения (входной части двигателя)(engine inlet section) ice detector
    - обледенения, двухштырьевой — dual probe ice detector
    - обледенения, радиоизотопный — radio-isotope ice detector
    - обледенения, штырьевой — probe ice detector
    - обнаружения (появления) дымаsmoke detector
    - обнаружения стружки (в масле двиг.) магнитный — magnetic chip detector
    - оборотов — speed /rpm/ sensitive switch
    - ограничения температуры (cot)temperature limit switch
    - опасного приближения к режиму сваливания, вибрационный (автомат тряски штурвала) — stick shaker. with stall warning test switch depressed, both stick shakers should operate.
    - опасной вибрации (двиг. 1) (световой) — (engine 1) vibration caution light
    - опасной высоты (световой, табло) — altitude alert light
    - опасных температур (сот) осуществляет переключения во внешней цепи, когда входной сигнал превышает уровень настройки задатчика. — overtemperature switch
    - остатка топлива (в баке)fuel (tank) low level switch
    сигнализирует о минимальном количестве топлива в баке. — low level warning of the fuel contents in tank no... is given by the fuel low level switch.
    - остатка топлива, поплавковый — fuel low float switch
    - остаточного давления в сети основного (аварийного) торможенияnormal (standby) brake residual pressure switch
    - отказа крм (курсового маяка) — localizer shutter, vor-loc flag, loc flag

    the localizer shutter or vor-loc flag covers the localizer runway when the localizer signal is lost.
    - отказа курса (прибора кпп) — localizer shutter, vor-loc flag, loc flag
    - отказа питания (датчик) — power fail /-lost/ relay /switch/
    - отказа питания (индикатор) — power fail /-lost/ indicator
    - отказа (сигнала) ворvor fail flag
    - отказа счетчика зпу (рис. 73) — course (counter) readout fail flag /shutter/
    - отказа счетчика дальности (в км) (рис. 73) — dme readout fail flag, dme fail flag /shutter/
    - отказа, шторный — shutter
    - отключения стабилизации антенны (рлс)ant stab off indicating light (for radar antenna stabilization turn-off)
    - открытого положения замка реверса тягиthrust reverser lock open position warning switch
    - отрицательного крутящего моментаnegative torque switch
    - первой и второй очереди разряда огнетушителей — (fire extinguisher) main and alternate (main, altn disch) discharge indicator
    - перегреваoverheat detector
    - перегрузки — g-switch, g switch
    - перегрузки (напр., пятикратной) — 5g-switch, 5g switch
    - перепада давленияdifferential pressure switch
    для контроля работы топливной системы, включающий табло засор. фильтра. — the switch is used to monitor the fuel system condition to actuate the light placarded filter clog.
    - перепада давления на (топливном) фильтре(fuel) filter differential pressure switch
    - перепада давления топлива (спт) (на выходе подкачивающего насоса бака)fuel differential pressure switch
    -, пилотажно-посадочный (ппс) — landing gear (and flaps) position indicating panel
    - повышенного давления (в топливном баке)(fuel tank) overpressure switch (ovpr sw)
    - (наличия или отсутствия) подвескиstore station status indicator
    - пожара (датчик)fire detector
    - пожара (лампа, табло) — fire warning light
    - пожара, быстродействующий — quick acting fire detector
    - пожара, контурный — continuous type fire detector
    - положения (индикатор)position indicator
    - положения закрылковflap position indicator
    - положения замка реверсивного устройстваthrust reverser (door) lock position switch
    - положения лопаток вна квдhp igv position switch
    - положения "обратной тяги створок реверса" — thrust reverser door /bucket/ deployed /extended/ position warning switch
    - положения рудthrottle position switch
    - положения рычага крана управления реверсивным устройствомthrust reverser control valve lever position switch
    - положения створок реверсивного устройстваthrust reverser door position switch
    - положения (угла) лопаток bha с углом установки 0° (или -33°) — 0° (or -33°) igv position switch
    - положения шассиlanding gear position indicator
    - помпажа (двиг.) — surge warning switch
    - появления металлической (стружки (спмс))chip detector
    - появления стружки (в маслосистеме двигателя) — chip detector, chip-in-oil detector
    - предельного значения скорости — maximum operating limit speed switch /relay/
    - предельного значения числа m — maximum operating limit mach number switch /relay/
    - предупреждения об отказе системы (табло)system failure warning annunciator
    - приборной скоростиias switch
    - работы (системы омега) в режиме счисления пути — dr /dead reckoning/ annunciator
    - разряда огнетушителей второй очереди (световой, загорающийся при разряде огнетушителей второй очереди) — alternate /reserve/ fire extinguisher discharge (altn firex disch) indicator light, fire agent no. 2 discharge (fire agent no. 2 disch) light
    - разряда огнетушителей первой очереди (световой) — main fire extinguisher discharge (main firex disch) light, fire agent no. 1 discharge (fire agent no. 1 disch) light
    - (само)разряда огнетушителейfire extinguisher discharge indicator
    - (само)разряда огнетушителей в результате воздейств я высокой температуры окружающей среды — fire extinguisher thermal discharge indicator
    - (само)разряда огнетушителей, мембранный — fire extinguisher discharge bursting disc indicator
    - (датчик) сваливания (самолета) — stall sensor /detector/
    - сваливания, вибрационный (автомат тряски штурвала) — stick shaker. stick shakers are activated by the stall warning system.
    -, световой аварийный (требующий немедленного действия, цвет обычно - красный) — warning light. warning lights are of red color to indicate a hazard requiring an immediate corrective action.
    -, световой предупредительный (рекомендующий выполнение какого-либо действия, обычно желтый) — caution light. caution lights are of amber color to indicate a possible need for future corrective action.
    -, световой уведомительный (сигнализирующий о положении или состоянии контролируемого элемента или системы, цвет (обычно зеленый) — indicator /indicating/ light. green lights are used solely for information not indicating a need for а corrective асtion.
    -, световой указательный (рекомендующий) — advisory light
    - скоростиspeed warning device
    сигнальное устройство, обеспечивающее выдачу звукаового сигнала при превышении заданной максимальной скорости. — speed warning device gives an effective aural warning to pilots whenever the speed exceeds the prescribed maximum speed.
    -скорости (приборной, типа сса) — ias switch
    - состояния синхронизации (сис. омега, по сигналам наземных станций) — omega synchronization status annunciator (syn)
    - сравнения работы двух инерциальных навигационных систем (световой)ins (system) comparison warning light
    - срыва потока (датчик) — stall sensor /detector/
    - "стрелка", мнемонический — warning arrow
    сигнализатор "стрелка" мигает при отказе прибора на другой приборной доске. — arrow will flash to indicate an instrument failure on орposite flight instrument panel.
    - стружки (наличия стружки в масле)chip detector
    - температурыtemperature (sensitive) switch
    - температуры подшипника (стп) (опоры двиг.) — bearing temperature detector (brg temp det)
    - толщины льда (стл)ice accretion detector
    -, трещеточный (издающий резкий прерывистый звук) — clacker a/с ovsp - clacker.
    - (-) указательindicator
    - уровня заправки (суз) (сливного бака санузла, поплавковый) — (float operated) fluid level switch
    - уровня заправки топливомfuel level switch
    - уровня топливаfuel level switch
    - уровня топлива, поплавковый — float-operated fuel level switch
    - цифровой индикацииnumerical display (annunciator)
    - числа mmach switch
    - эксплуатационных минимумов аэродромаairport minima reminder
    высотомеры имеют подвижные индексы для установки эксплуатационного минимума аэродрома. — movable bug is installed on altimeters to set airport minima prior to approach.
    - юза (толкатель на педали управления тормозом)foot thumper
    плунжер, выступающий из тормозной педали и толкающий ногу летчика при юзе колес шасси. — a plunger protruding from brake pedal to strike the pilot's shoe when wheel is skidding.
    - а рудthrottle position switch
    - а руд "max" — max throttle position switch
    - а руд "mг" — idle throttle position switch

    Русско-английский сборник авиационно-технических терминов > сигнализатор

  • 12 картер коробки передач

    Русско-английский военно-политический словарь > картер коробки передач

  • 13 пункт

    пункт сущ
    1. point
    2. tower 3. unit аэродромный диспетчерский пункт
    1. aerodrome control unit
    2. aerodrome control point 3. aerodrome control tower аэродромный диспетчерский пункт полетной информации
    flight information service unit
    возвращаться в пункт вылета
    fly back
    временная разница пунктов полета
    jetlag
    дальность полета до намеченного пункта
    range to go
    дальность полета до пункта назначения
    flight distance-to-go
    диспетчерский пункт захода на посадку
    approach control point
    диспетчерский пункт управления заходом на посадку
    approach control unit
    изменение промежуточного пункта маршрута
    waypoint change
    командно-диспетчерский пункт аэрофлота
    airport control tower
    конечный пункт назначения
    final destination
    конечный пункт радиолокационного контроля
    terminal radar control
    контрольный пункт
    check point
    контрольный пункт связи
    communication check point
    навигационные средства конечного пункта
    terminal navigation aids
    передавать диспетчерское управление другому пункту
    transfer the control
    передача в пункте стыковки авиарейсов
    interline transfer
    передвижной диспетчерский пункт в районе ВПП
    runway control van
    передвижной пункт
    van
    планируемый пункт назначения
    intended destination
    промежуточный пункт маршрута
    waypoint
    прямая связь между пунктами
    direct point-to-point connection
    пункт возврата
    turnaround
    пункт выгрузки
    point of unloading
    пункт вылета
    1. point of origin
    2. departure place 3. point of departure пункт выхода на связь
    point of call
    пункт информации
    information desk
    пункт контроля на наличие металлических предметов
    metal-detection gateway
    пункт наблюдения
    observation station
    пункт назначения
    1. destination
    2. point of destination пункт назначения, указанный в авиабилете
    ticketed destination
    пункт назначения, указанный в купоне авиабилета
    coupon destination
    пункт обслуживания воздушного движения
    air traffic services unit
    пункт обязательных донесений
    compulsory reporting point
    пункт оформления пассажиров и багажа
    check-in office
    пункт передачи
    transfer point
    пункт переключения частоты связи
    change-over point
    пункт поворота маршрута
    mileage break
    пункт погрузки
    point of loading
    пункт прибытия
    arrival place
    пункт прилета
    point of arrival
    пункт проведения акустических замеров
    acoustic measurement station
    пункт трассы полета
    airway fix
    пункт управления воздушным движением
    air traffic control unit
    пункт управления заходом на посадку
    approach control tower
    пункт управления полетами
    operations tower
    пункты вылета и прилета
    city-pair
    разрешение аэродромного диспетчерского пункта
    aerodrome control tower clearance
    районный диспетчерский пункт управления полетами
    area flight control
    расстояние в милях между указанными в билете пунктами
    ticketed point mileage
    согласованный пункт выхода на связь
    agreed reporting point
    сортировочный пункт
    yard
    тариф между двумя пунктами
    point-to-point fare
    узловой пункт
    node
    уровень шума в населенном пункте
    community noise level
    частота командно-диспетчерского пункта аэродрома
    airport tower frequency

    Русско-английский авиационный словарь > пункт

  • 14 связь

    связь сущ
    1. communication
    2. coupling аварийная связь
    distress communication
    аварийная связь с воздушным судном
    air distress communication
    авиационная связь
    aeronautical telecommunication
    аэродромная командная связь
    aerodrome control communication
    аэродромная радиостанция командной связи
    aerodrome control radio
    безредукторная обратная связь
    direct feedback
    беспроводная связь
    wireless communication
    блок связи автопилота с радиостанцией
    radio-autopilot coupler
    блок связи с курсовой системой
    compass system coupling unit
    блок связи с радиолокационным оборудованием
    radar coupling unit
    ведение связи
    communications operation
    выделение канала для связи
    channel assignment
    вызов на связь
    1. callup
    2. call-in 3. aircall гибкая обратная связь
    flexible feedback
    главная магистральная цепь связи
    main trunk circuit
    дальность связи
    initial contact range
    датчик обратной связи
    feedback transmitter
    двухканальная дуплексная связь
    double channel duplex
    двухканальная связь
    double channel
    двухканальная симплексная связь
    double channel simplex
    дискретная система связи
    discrete communication system
    дуплексная связь
    1. two-way communication
    2. duplex импульсная связь
    pulse radio communication
    канал микроволновой связи
    microwave link
    канал прямой радиолокационной связи
    direct access radar channel
    канал радио связи
    radio channel
    канал связи воздух-земля
    1. downlink
    2. down link канал связи воздух - земля
    air-ground communication channel
    канал связи земля-воздух
    up link
    канал связи на маршруте
    on-course channel
    канал спутниковой связи воздух - земля
    aircraft-to-satellite channel
    конец связи
    out
    контрольный пункт связи
    communication check point
    контур обратной связи
    feedback loop
    линия циркулярной связи
    conference bridge
    межзональная связь
    interarea communication
    наземная линия связи
    landline
    обеспечение переговорной связи
    intercommunication
    оборудование циркулярной связи
    conference facilities
    обратная связь
    1. feedback
    2. back coupling одноканальная связь
    single channel communication
    оперативная связь авиакомпаний
    airline operational communication
    оператор авиационной связи
    air communicator
    отрицательная обратная связь
    negative feedback
    поддерживать связь
    1. carry out communication
    2. maintain communication позывной общего вызова на связь
    net call sign
    полет в связи с особыми обстоятельствами
    special event flight
    положительная обратная связь
    positive feedback
    помехи от авиационных средств связи
    air clutter
    порядок действий при отказе средств связи
    communication failure procedure
    проводная связь
    wire communication
    прямая связь между пунктами
    direct point-to-point connection
    пункт выхода на связь
    point of call
    пункт переключения частоты связи
    change-over point
    радиостанция диспетчерской связи
    control radio station
    радиотелефонная связь
    radiotelephony communication
    радиотехнические средства связи
    radio communication equipment
    региональный узел связи
    regional telecommunication hub
    резервные средства связи
    alternative means of communication
    связь воздух - земля
    1. air-to-ground communication
    2. air-ground communication связь для управления полетами
    control communication
    связь на маршруте
    en-route communication
    связь по запросу с борта
    air-initiated communication
    связь по обеспечению регулярности полетов
    flight regularity communication
    связь при рулении
    taxiway link
    связь типа запрос - ответ
    request communication
    Секция связи
    Communication Section
    (ИКАО) сеть авиационной метеорологической факсимильной связи
    aviation meteorological facsimile network
    сеть национальной факсимильной связи
    national facsimile network
    сеть прямой речевой связи
    direct speech network
    сигнал обратной связи
    feedback signal
    симплексная связь
    1. simplex communication
    2. one-way communication 3. simplex система внутренней связи
    interphone system
    система наземных линий связи
    landline system
    система обратной связи управления разворотом колес передней опоры шасси
    nosewheel steering follow-up system
    система проводной связи
    wire system
    система речевой связи
    voice communication system
    система связи аэропорта
    airport communication system
    система связи воздух-воздух
    air-air net
    система сети радиотелефонной связи
    radiotelephony network system
    (воздушных судов) система телетайпной связи
    teletype broadcast system
    система телефонной связи
    phone system
    система управления с обратной связью
    feedback control system
    служба связи
    communication service
    согласованный пункт выхода на связь
    agreed reporting point
    спутник связи
    communication satellite
    средства связи
    1. means of communication
    2. communication facilities степень обратной связи
    amount of feedback
    телетайп наземной линии связи
    landline teletypewriter
    трос обратной связи
    follow-up cable
    трос обратной связи разворота
    steering feedback cable
    уровень помех речевой связи
    level of speech interference
    устанавливать связь
    establish communication
    центр обеспечения воздушной связи
    air communication center
    цепь обратной связи
    feedback circuit
    цепь прямой речевой связи
    direct speech circuit
    цепь связи
    coupling circuit
    цепь спутниковой связи
    satellite circuit
    цепь фиксированной авиационной связи
    aeronautical fixed circuit
    цифровая связь
    digital communication
    чартерный рейс в связи с особыми обстоятельствами
    special event charter
    частота вызова на связь
    calling frequency
    эксплуатационные правила радиотелефонной связи
    radiotelephony operating procedures

    Русско-английский авиационный словарь > связь

  • 15 линейно-интерактивный источник бесперебойного питания

    1. line interactive UPS
    2. Interactive UPS
    3. In-Line UPS

     

    линейно-интерактивный источник бесперебойного питания
    источник бесперебойного питания с линейно-интерактивным режимом работы
    -

    EN

    line interactive UPS
    A system, which energizes the load from the utility mains providing conditioned power by filtering and stabilizing mains voltage (VI class per IEC 62040-3).
    Upon mains outage the load is energized from batteries via the Inverter.
    [ http://www.upsonnet.com/UPS-Glossary/]

     

    0422
    Структурная схема линейно-интерактивного ИБП
    [ http://www.tcs.ru/reviews/?id=345]

    Исчезновение напряжения в питающей сети - явление довольно редкое.
    Гораздо чаще происходят провалы или всплески напряжения, вызывающие не менее серьезные последствия в нагрузке (электроприемнике). Именно это обстоятельство послужило причиной для разработки ИБП, способных регулировать напряжение сети. Такие ИПБ получили название линейно-интерактивных.
    Нетрудно заметить, что по схемотехнике линейно-интерактивные ИБП похожи на off-line ИБП. Принципиальным отличием между ними, обусловившим выделение line-interactive ИБП в отдельную группу, является наличие специального устройства (бустера), предназначенного для ступенчатой стабилизации выходного напряжения, осуществляемого путем автоматического переключения отводов трансформатора.
    Линейно-интерактивные ИБП являются удачным сочетанием простоты и надежности off-line ИПБ и быстродействия on-line ИБП. Существенным отличием указанных ИБП является форма выходного напряжения в автономном (аккумуляторном) режиме работы: у off-line ИПБ - ступенчатая, а у линейно-интерактивного ИБП - синусоидальная.
    Линейно-интерактивные ИБП часто используются для защиты офисной техники и серверов масштаба одного отдела.

    Достоинства:

    • компактность,
    • экономичность,
    • синусоидальная форма выходного напряжения,
    • ступенчатая стабилизация выходного напряжения.

    Недостатки:

    • отсутствие гальванической развязки нагрузки (электропотребителя) от питающей сети,
    • отсутствие стабилизации частоты выходного напряжения,
    • недостаточный уровень стабилизация выходного напряжения относительно номинального значения (5-7%).

    [ http://www.tcs.ru/reviews/?id=345 с изменениями]

    Параллельные тексты EN-RU

    The Agilon VX line-interactive UPS is a best value product designed for PCs, laptops, and POS equipment used in home offices and small businesses.
    [Delta Electronics]

    Линейно-интерактивный ИПБ Agilon VX600 является одним из лучших источников для бесперебойного питания персональных компьютеров и терминалов розничной торговли в домашних офисах и малом бизнесе.
    [Перевод Интент]



    Is it important that UPS include a Voltage Regulator?
    Definitively. When the AC Line voltage is not suitable for your PC the UPS uses internal batteries to supply appropriate power to your PC. If the UPS does not include a Voltage Regulator this range is rather narrow but when UPS includes Voltage Regulator this range can be quite wide because most of the variations can be managed by the stabilization system and consequently the use of the batteries is less frequent. Evidently the less the UPS uses the batteries the longer life they will have.
    Batteries Life Expectancy in an UPS including Voltage Regulator (Called
    Interactive UPS or In-Line UPS) is about 3 years, while batteries in an UPS not including Voltage Regulator (Off Line UPS) usually do not last longer than a year. Nevertheless end users rarely realize their batteries are loosing properties since the back up time can only be measured during actual blackouts and then it could be too late.
    [ http://www.integra-ups.com/am/en/soporte/preguntas.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > линейно-интерактивный источник бесперебойного питания

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»